2017年3月10日下午4:00Yury Gogotsi 教授学术报告

报告主题:Two-Dimensional Carbides and Nitrides Expand the Flatlands

报告人:Yury Gogotsi 教授 Department of Materials Science and Engineering A. J. Drexel Nanomaterials Institute Drexel University 吉林大学“外专千人”特聘教授

主持人:吴明娒 教授

时间: 2017年3月10日 (星期五)下午4:00

地点:丰盛堂A403

欢迎广大师生参加!

报告摘要:

Two-Dimensional Carbides and Nitrides Expand the Flatlands

 

Yury Gogotsi

Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA http://nano.materials.drexel.edu

Two-dimensional (2D) solids – the thinnest materials available to us – offer unique properties and a potential path to device miniaturization. The most famous example is graphene, which is an atomically thin layer of carbon atoms bonded together in-plane with sp2 bonds. In 2011, a new family of 2D solids – transition metal carbides and nitrides (Ti2C, Ti3C2, Nb4C3, Ti4N3, etc.) – was discovered by Drexel University scientists [1]. These 2D solids with a composition Mn+1Xn (M is a transition metal, X is C or N) were labeled “MXenes”. More than 20 different carbides, nitrides and carbonitrides have been reported to date [2-5]. A new sub-family of multi-element ordered MXenes was discovered recently [2]. Structure and properties of numerous MXenes have been predicted by the density functional theory, showing that MXenes can be metallic or semiconducting, depending on their composition and surface termination. Their elastic constants along the basal plane are expected to be higher than that of the binary carbides. Oxygen or OH terminated MXenes are hydrophilic, but electrically conductive. Hydrazine, urea and other polar organic molecules can intercalate MXenes leading to an increase of their c lattice parameter [3]. One of the many potential applications for 2D Ti3C2 is in electrical energy storage devices such as batteries, Li-ion capacitors and supercapacitors [3-5]. Metallic MXenes have a potential for use in electromagnetic interference (EMI) shielding, transparent conducting coatings and many other applications. The reported EMI shielding efficiency values of flexible Ti3C2Tx films are the highest of any known synthetic materials with similar thickness [6]. Moreover, excellent shielding ability is maintained after adding sodium alginate to create polymer composite films. The 2D structure, combined with high conductivity and good electronic coupling between the layers, is responsible for the extremely high EMI shielding efficiency of MXenes [6].

1.       M. Naguib, et al, Advanced Materials,  23 (37), 4207-4331 (2011)

2.       B. Anasori, et al, ACS Nano, 9 (10) 9507–9516  (2015)

3.       O. Mashtalir, et al, Nature Communication, 4, 1716 (2013)

4.       M M. Ghidiu, Nature, 516, 78–81 (2014)

5.       B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nature Reviews Materials, 2, 16098 (2017)

6.       F. Shahzad, et al, Science 353, 1137-1140 (2016)   


报告人简介:

Yury Gogotsi  教授 简介

 

Yury Gogotsi is Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University. He is the founding Director of the A.J. Drexel Nanomaterials Institute and Associate Editor of ACS Nano. He works on nanostructured carbons and two-dimensional carbides for energy related and biomedical applications. His work on selective extraction synthesis of carbon and carbide nanomaterials with tunable structure and porosity had a strong impact on the field of capacitive energy storage. He has co-authored 2 books, more than 450 journal papers and obtained more than 50 patents. He has received numerous national and international awards for his research. He was recognized as Highly Cited Researcher by Thomson-Reuters in 2014-2016, and elected a Fellow of AAAS, MRS, ECS, RSC, ACerS and the World Academy of Ceramics.

文章录入:院办      责任编辑:院办
分享本文: